Computing Stark units for totally real cubic fields
نویسندگان
چکیده
A method for computing provably accurate values of partial zeta functions is used to numerically confirm the rank one abelian Stark Conjecture for some totally real cubic fields of discriminant less than 50000. The results of these computations are used to provide explicit Hilbert class fields and some ray class fields for the cubic extensions.
منابع مشابه
Stark's conjecture over complex cubic number fields
Systematic computation of Stark units over nontotally real base fields is carried out for the first time. Since the information provided by Stark’s conjecture is significantly less in this situation than the information provided over totally real base fields, new techniques are required. Precomputing Stark units in relative quadratic extensions (where the conjecture is already known to hold) an...
متن کاملStark's Conjectures and Hilbert's Twelfth Problem
We give a constructive proof of a theorem given in [Tate 84] which states that (under Stark’s Conjecture) the field generated over a totally real field K by the Stark units contains the maximal real Abelian extension of K. As a direct application of this proof, we show how one can compute explicitly real Abelian extensions of K. We give two examples. In a series of important papers [Stark 71, S...
متن کاملExplicit Computation of Gross-stark Units over Real Quadratic Fields
We present an effective and practical algorithm for computing Gross-Stark units over a real quadratic base field F. Our algorithm allows us to explicitly construct certain relative abelian extensions of F where these units lie, using only information from the base field. These units were recently proved to always exist within the correct extension fields of F by Dasgupta, Darmon, and Pollack, w...
متن کاملOn the mean number of 2-torsion elements in the class groups, narrow class groups, and ideal groups of cubic orders and fields
Given any family of cubic fields defined by local conditions at finitely many primes, we determine the mean number of 2-torsion elements in the class groups and narrow class groups of these cubic fields, when they are ordered by their absolute discriminants. For an order O in a cubic field, we study the three groups: Cl2(O), the group of ideal classes of O of order 2; Cl2 (O), the group of narr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 1997